<-
Apache > HTTP Server > Documentation > Version 2.4 > Miscellaneous Documentation

Apache Performance Tuning

Available Languages:  en  |  fr  |  ko  |  tr 

Apache 2.x is a general-purpose webserver, designed to provide a balance of flexibility, portability, and performance. Although it has not been designed specifically to set benchmark records, Apache 2.x is capable of high performance in many real-world situations.

Compared to Apache 1.3, release 2.x contains many additional optimizations to increase throughput and scalability. Most of these improvements are enabled by default. However, there are compile-time and run-time configuration choices that can significantly affect performance. This document describes the options that a server administrator can configure to tune the performance of an Apache 2.x installation. Some of these configuration options enable the httpd to better take advantage of the capabilities of the hardware and OS, while others allow the administrator to trade functionality for speed.

See also

top

Hardware and Operating System Issues

The single biggest hardware issue affecting webserver performance is RAM. A webserver should never ever have to swap, as swapping increases the latency of each request beyond a point that users consider "fast enough". This causes users to hit stop and reload, further increasing the load. You can, and should, control the MaxRequestWorkers setting so that your server does not spawn so many children that it starts swapping. The procedure for doing this is simple: determine the size of your average Apache process, by looking at your process list via a tool such as top, and divide this into your total available memory, leaving some room for other processes.

Beyond that the rest is mundane: get a fast enough CPU, a fast enough network card, and fast enough disks, where "fast enough" is something that needs to be determined by experimentation.

Operating system choice is largely a matter of local concerns. But some guidelines that have proven generally useful are: